Maximum mutual information estimation with unlabeled data for phonetic classification

نویسندگان

  • Jui-Ting Huang
  • Mark Hasegawa-Johnson
چکیده

This paper proposes a new training framework for mixed labeled and unlabeled data and evaluates it on the task of binary phonetic classification. Our training objective function combines Maximum Mutual Information (MMI) for labeled data and Maximum Likelihood (ML) for unlabeled data. Through the modified training objective, MMI estimates are smoothed with ML estimates obtained from unlabeled data. On the other hand, our training criterion can also help the existing model adapt to new speech characteristics from unlabeled speech. In our experiments of phonetic classification, there is a consistent reduction of error rate from MLE to MMIE with I-smoothing, and then to MMIE with unlabeled-smoothing. Error rates can be further reduced by transductive-MMIE. We also experimented with the gender-mismatched case, in which the best improvement shows MMIE with unlabeled data has a 9.3% absolute lower error rate than MLE and a 2.35% absolute lower error rate than MMIE with I-smoothing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised training of Gaussian mixture models by conditional entropy minimization

In this paper, we propose a new semi-supervised training method for Gaussian Mixture Models. We add a conditional entropy minimizer to the maximum mutual information criteria, which enables to incorporate unlabeled data in a discriminative training fashion. The training method is simple but surprisingly effective. The preconditioned conjugate gradient method provides a reasonable convergence ra...

متن کامل

Estimation of Squared-Loss Mutual Information from Positive and Unlabeled Data

Capturing input-output dependency is an important task in statistical data analysis. Mutual information (MI) is a vital tool for this purpose, but it is known to be sensitive to outliers. To cope with this problem, a squared-loss variant of MI (SMI) was proposed, and its supervised estimator has been developed. On the other hand, in real-world classification problems, it is conceivable that onl...

متن کامل

Optimistic Active-Learning Using Mutual Information

An “active learning system” will sequentially decide which unlabeled instance to label, with the goal of efficiently gathering the information necessary to produce a good classifier. Some such systems greedily select the next instance based only on properties of that instance and the few currently labeled points — e.g., selecting the one closest to the current classification boundary. Unfortuna...

متن کامل

A penalized logistic regression approach to detection based phone classification

Recently, we have proposed a detection-based speech recognizer which has two main components: a bank of phonetic feature detectors implemented with hidden Markov models (HMMs), and an event merger. Each detector generates a score that pertains to some phonetic features, e.g. voicing. The merger combines all these scores to generate phone labels. The parameters of the detectors and the merger ca...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008